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SECTION 1

INTRODUCTION AND SUMMARY

This project studies the atomic structures of boundaries. The tool used in

the study is the cluster variation method (CVM) of statistical mechanics, with

the work leading to information on excess free energy (surface tension), excess

entropy, and the amount of adsorption and the profile of the density across the

boundary. This project is unique in obtaining such information from a

microscopic point of view. And while different from some phenomenological

approaches, the CVM technique is thermodynamically consistent, in the sense that

thermodynamic relations are always satisfied.

In the period preceding the present report time frame, we pursued three

different directions. The first considered the boundaries in binary fcc

crystals, the second examined the grain boundary structure, and the third was

concerned with the scalar-product expression of the boundary free energy. In

the present report period, the work in the first two categories has been further

exploited.

(A) In working with the statistical mechanics of binary fcc alloys we need

a tetrahedron made of four lattice points. 31
2 Our two previous

papers3, worked on the antiphase and interphase boundaries (APB and IPB)

in the Cu3Au ordered phase and the disordered phase using a tetrahedron. We

found that the boundary free energy, a (of both APB and IPB), goes through a

maximum when plotted against the temperature. This behavior of a is similar to

the yield strength of the material and suggests the close relation between the

two properties.

The work on the fcc boundaries has been continued and a rotational APB in

CuAu ordered phase has been studied, as is reported in Appendix A. Different

from our previous work in Refs. 3 and 4, the left- and right-hand sides of this

boundary are not symmetrical. Because of the asymmetry, the boundary behaves in

a markedly different way from previous boundaries. By contrast, a first order

phase transition occurs within the boundary. The amount of adsorption of Au

atoms at the boundary changes sign as the temperature increases. Another kind

of phase transition is also derived at a non-stoichiometric composition.

I7



Although the theory is thermodynamically self-consistent, we decided,

because these findings are so unique, to spend ample time to verify the accuracy

of the theory before publishing the result.

(B) In previous studies of the structure of a two-dimensional grain

boundary5 we used a DSC lattice as the reference lattice on which atoms can

move. The lattice constant of the DSC lattice is smaller than that of the

crystals on both sides of the boundary. We found that the grain boundary

changes into the liquid-like high temperature phase at the temperature range

much below the bulk melting point.

We have extended these findings and have worked on a three-dimensional

grain boundary, as reported in Appendix B. The work is an ABC-CBA stacking

boundary in a fcc crystal. The reference lattice has three times as many

lattice points as the fcc lattice of concern. The basic cluster of the CVM

method is a three-layer rhombus prism with twelve lattice points. Since the

structure is three-dimensional, the number of variables is large (about 90,000).

Nevertheless, the natural iteration method 6 can solve the set of simultaneous

nonlinear algebraic equations. For computation a CRAY computer, which is

capable of vector processing, was used.

The calculation leads to thermodynamic information about the boundary: the

excess free energy, the entropy and the density profile. Additional work is

planned for different temperatures and chemical potentials, and for (110) and

(112) directions of the boundary. Thus far, however, only two temperatures for

the (110) boundary have been calculated, and further commentary on the

noteworthy features of this boundary would be premature.

(C) In Appendix C we have printed a still unpublished paper by

wDr. John W. Cahn of the National Bureau of Standards who has been collaborating

on this project. This paper concerns faceting and dissociation of grain

boundaries and is expected to be an important work in the field.

8



SECT[ON 2

FIRST ORDER TRANSITIONS WITHIN ROTATIONAL APB's IN Li0 PHASE

The CuAu-type ordered phase is called LI0 and is a layer structure with

alternating Cu and Au layers. We placed these layers perpendicular to the plane

V. of a paper to form the right-hand side of the boundary. We kept the layers

perpendicular to the paper and turned them 90% then placed them on the left-

hand side of the boundary. The boundary formed is illustrated in Figure 1 of

Appendix A.

We used the tetrahedron as the basic cluster and implemented the CVH2 to

calculate the boundary structure. The mathematical technique is similar to the

one used before 4 in calculating the APB and IPB related to the Cu3Au phase. The

grand potential G of the entire system including the boundary region is

minimized, keeping the chemical potentials fixed. The G quantity is defined as

G 1I,-E-T -( i2N2

where F is the Helmholtz free energy, E is the internal energy, S is the

entropy, Vi is the chemical potential, and Ni is the total number of the

i-th atom (i-i and 2). In minimizing G, we placed the end conditions for the

far left and far right ends in the respective homogeneous state.

In the formulation we did not include vacancies or many-body interactions.

Therefore, the results are symmetrical with respect to the interchange of 1 and

2 (Cu and Au) species. When we express )A1 - 42 simply as Ui, the stoichiometric

composition (Cu and Au, both 50%) corresponds to Ui - 0. We may choose U > 0 for

the Au-rich side.

q When we calculated the excess adsorption, r, of Au at the boundary, we

discovered that a high temperature r is positive when Pi > 0 and that r changes

discontinuously to a negative value when P crosses U - 0 to the U < 0 side.

This behavior shows that there are two phases coexisting at U -0 for this

temperature and that the transition is first order. This behavior is shown in

Figure 4(a) of Appendix A.

9



For the low temperature region, we derived the first order transition of a

similar kind. However, the low temperature behavior is distinctly different

from the high temperature one, as is discussed in detail in Section 4 of

Appendix A; we can define a transition from the low to high temperature behavior

at kT3/w - 0.515 in Figure 3 of Appendix A. The transition at T 3 and at 0 - 0

is a third order.

The behavior of this system around T3 satisfies all of the thermodynamic

requirements. However, the theoretical results are so unique that we decided

not to publish the findings at this time, but rather to spend more time

examining the validity of the results.

Basides the first order transition discussed above, there is one more phase

transition near the composition 0.54, as shown in Figure 5 of Appendix A. This

phase transition is due to the order-disorder change within one of the Cu layers

of the layer structure.

10



SECTION 3

THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE

The (111) planes of the fcc structure is stacked as ABCABC... as opposed to

the ABAB... stacking of the hcp structure. A boundary in the fcc structure is

formed when the stacking is ABC... on the left-hand side and CBA... on the

right. We discuss the structure of this stacking boundary in Appendix B.

Atoms were not only allowed to be located on fcc lattice points, but also

at interstitial positions. The interstitial positions are defined by

translating the fcc lattice perpendicular to the (111) direction, as shown in

Figure 2 of Appendix B. Including these interstitial positions, the reference

lattice forms a hexagonal lattice which has three times as many lattice points

as the original fcc lattice. This hexagonal lattice plays the role of the

reference DSC lattice used in the two-dimensional grain boundary examinations

discussed in Ref. 5.

The basic cluster is the three-layer rhombus prism (defined in the

reference hexagonal lattice), as shown in Figure 4 of Appendix B. The

subclusters, V2, U3, U2, P3 and P2, shown in Figure 4, are also used.

In the reference hexagonal lattice, atomic pairs on adjacent lattice pairs

are excluded. The second-neighbor atomic pair is the stable pair and is

assigned an attractive potential energy, -e (e being positive). The potential

energy assignment for atomic pairs is defined in Table 1 of Appendix B. The 0-9

pair is stable in the fcc structure and the 0-8 pair is stable in the hcp

structure. In view of our work on the fcc we assigned an attraction to 0-9 and

a repulsion to 0-8.

The entropy expression based on the rhombus prism is one of the key points

in the formulation. It is derived by using the standard derivation of the

entropy expression in the CVM.
7

The equilibrium state is derived by minimizing the grand potential, which

is of the form of Equation (I), the difference being that N, is the total number

of atoms in a system, P1 is the chemical potential of the atoms, and P2 0 O. We

impose the end condition where the left end of the system is in the homogeneous

ABC stacking state and the right end is the CBA stacking state.

q



Since the number of independent variables is about 90,000, it is necessary

to use a fast computer. A CRAY computer, which has vectorization capability,

solved the variables by the iteration method in about 50 min CPU time.

The density profile across the boundary is shown in Figure 6 of Appendix B

for the (110) boundary orientatton.

In order to derive useful information from the computation, it is necessary

to work out several different temperatures for at least two orientations of the

boundary. Further work along this line is being planned.

12
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SECTION 4

TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY STRUCTURES

The geometry of a grain boundary is characterized by three angular

* variables, R, and two angular variables, N. The R variables specify the

misorientation of the two grains meeting at the boundary, and the N variables

are for the normal to the boundary plane. The excess free energy, Y, depends on

R and N. Recently, Dr. John W. Cahn, our consultant and collaborator, noted

that the relation between Y and N is analogous to the relation between the bulk

Helmholtz free energy and the composition. When this analogy is extended, the

well-established concept and formulation of phase equilibria of bulk systems can

be translated into the new concept and formulation of phase and phase equilibria

among grain boundaries. In this way, Cahn has developed a theory of grain

U boundary faceting and dissociation. This is a pioneering and novel idea in the

field of grain boundary physics and will undoubtedly open up new activities.

Dr. Cahn kindly agreed to have this unpublished work printed in thi.3 report

as Appendix C. (The work was done at the National Bureau of Standards.

However, the research in Ref. 40 was supported by this contract, as acknowledged

* at the end of the paper.)
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APPENDIX A

First order transition within rotational APB's

in Lio phase*

Ryoichi Kikuchi

Hughes Research Laboratories

ABSTRACT

The 900 rotational antiphase boundaries (APB) in the L1 0 phase (CuAu-type

ordered phase in the fcc lattice) are studied using the tetrahedron approxima-

tion of the cluster variation method. Calculation is done for a nearest-

neighbor interaction without many-body forces. At the stoichiometric

composition, excess adsorption of Au at the boundary increases discontinuously

as the boundary changes from Cu-rich to Au-rich isothermally, indicating a

first order transition. There is another first order transition at a larger Au

composition. The nature of the transitions is shown by plotting profiles of

densities on four sublattices.

* Supported by U.S. Army Research Office.
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" A. INTRODUCTION

Properties of boundaries in the fcc lattice were studied before1 using the

tetrahedron as the basic cluster in the cluster variation method (CVN).2,3

Calculations were done on the antiphase boundaries (APB) in the A 3B phase (L12)

and on the interphase boundaries (IPB) between the L12 and the disordered (A3)

phase. The excess free energies due to the IPB and APB showed a marked feature

in that they go through maxima as the temperature increases.

In the present paper, we apply the same tetrahedron treatment of the CVM to

APBs in the AB-type phase (L1 0 ) in the fcc lattice. The main part of the paper

is concerned with the boundary illustrated in Figure 1, which is drawn for the

* Au-Cu alloy. The L10 phase has a layer structure of Au-rich and Cu-rich planes

alternating with each other. A line in Figure 1 indicates a crystal plane that

is perpendicular to the plane of the paper. We see that the left side of the

boundary is rotated by 900 with respect to the right side. Since the layer

planes on the left side are 900 to the direction of the boundary, we may call

this the 90°-rotational boundary.

As shown in (A) and (C) in Figure 1, two cases are distinguishable,

depending on whether the layer closest to the boundary on the right-side phase

* ,is Au-rich, as in (A), or Cu-rich, as in (C).

B. GRAND POTENTIAL MINIMIZATION

We can distinguish four sublattices. We number the lattice planes as

shown in Figure 1. The odd sublattices I and III are on odd planes. We use the

-. index iil for a Cu atom and i-2 for a Au atom. The probability that a I sub-

lattice point at position n is occupied by the i-th species is written asU
xi,n(i)- Since vacancies are not considered in the formulation, x's are

normalized for any n and for a - I, I, III, and IV as

xai,n(1 ) +x,n (2)

q
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EVEN ODDEVEN ODD n o
n n+1 I

*--~) CU~-$)-- CU - ) Au 4CU IV(C)

~CUK . CU D Au CU Au (A)

- Au)

Au -( AuAu Au C uCu
-Au (4)- CUi Au kA Cu

Au Au Au Au CU A

-Au C-~-- u-- Cu Au C Au u

Au Au Cu ~Au C u C

(C)
4 Au Au CU Au C a

-Au Au CU A CU u CU

Figure 1. Structure of the 90*-rotational APE. The Au and

Cu layers are perpendicular to the plane of the
paper. In (A), the Au layer on the right is
closest to the boundary, while in (C), the CU
layer is closest to the right.
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K As was done in the previous work on the fcc boundaries,1 we use as the

basic cluster a tetrahedron made of four adjacent lattice points. There is one

kind of tetrahedron for each n. Since each lattice point is occupied either by

Cu or Au, there are 16 possible configurations of a tetrahedron. Probabilities

of these configurations are used as the basic variables, which we will call the

z variables.

In order to solve the equilibrium structure of the boundary, we first write

the grand potential G in terms of the z variables, and then minimize G with

respect to z's.

The grand potential G is defined as

+G - E - TS 1 ,N1 + p2N2 (2)

*g where E is the internal energy, S is the entropy, Ui(i-l and 2) is the

chemical potential of the i-th species and N is the total number of the i-th

atoms in the system.

The energy is written based on the values for nearest neighbor pairs.

Without the loss of generality we can assign the energy value 0 for the i-i pair

(i - 1 or 2) and w for the 1-2 pair, as was done in Ref.l. The many-body

interaction parameters, a and 0, used in Ref.l however, are made equal to zero

in the present paper in order to simplify computations, and because the

inclusion of a and B does not change the qualitative features of the results.

The entropy expression is the key element of the CVM. It is written in

terms of the z variables and of the probabilities for subclusters, namely,

lattice pairs and lattice points. Triangles are subclusters of a tetrahedron,

V but do not appear in the entropy expression of the tetrahedron treatment. There

are six different kinds of lattice pairs for each n, depending on how the four

sublattices are connected.

w

22



In writing the chemical potential terms in Equation (2), when we do not

include vacancies in the lattice, the sum of P, and P2 vanishes so that we

define the independent 0 as

P, =1 2 P " (3)
I

Due to the symmetry of the problem, P - 0 at the 50-50 composition, and P

increases with the Au composition.

The equilibrium structure of the boundary is derived by minimizing the

grand potential G, keeping T and P fixed, with respect to the tetrahedron

variables under the normalization constraints, continuity constraints and the

end structure constraints. The continuity constraints guarantee that two z's on

adjoining position share a lattice pair. For the left end conditions we require

that x(i) - Xlv(i) and x 1 (i) xlii(i) take the bulk values of

the Cu and Au sublattices, respectively. For the right end, xi(i)- xjII(i)

and x1i(i) - xiv(i) take the corresponding values. These choices are in

accordance with the Figure 1 assignment.

Differentiations of G lead to simultaneous non-linear equations. They are

solved by the natural iteration method (NIH), which has been developed before.4

Each tetrahedron has 16 z variables. Typically, we work n (the position of the

plane) ranging from 1 through 50, leading to the total 800 z values. The con-

tinuity constraints require additional 150 Lagrange multipliers. In spite of

the relatively large number of variables, the NIM converges well. The Lagrange

variables are determined by the iteration scheme called the minor iteration.1

C. BOUNDARY PROFILE

A typical profile is shown in Figure 2. This plots the occupation

probability x(2) of a Au atom at a lattice point. The boundary is around the

positions n -20 through 25.

23
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1.0

X11(2) Xgg12) AND XV2

0.8 X11 (2 )

0.6
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X11(21 X,(21 AND XIV(2)

0.8 -X 1112)

0.6
(b)

0.4

0.2 1(2J X112) AND X 1 1(2)

12 14 16 16 20 22 24 26 28 30 32 34

Figure 2. Density profile of Au atoms on the four sublattices
across the boundary at kT/IwI - 0.7. The values
are +0.02 in (a) and -0.02 in (b). (a) and (b) cor-
respond to Figure 1 (A) and (C), respectively.
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On the left end of Figure 2, xii(2) and x1II(2) are practically

the same and are close to unity. This means II and III sublattices are

occupied preferentially by Au atoms in agreement with the sublattice assigment

in Figure 1. As we come closer to the boundary, xI( 2 ) and xlii(2)

gradually deviate from each other, as do xi(2 ) and xIV( 2).

The structure of the sublattice occupation on the right side of the

boundary is different. At and beyond the position n-22, x11 (2) and

xIV(2 ) are exactly equal. The two values split off suddenly at n-20.

Similarly, xi(2) and xi1 1 (2) are equal at and beyond n-23, and split off

at n=21.

We now see the difference of the right and left sides of the boundary.

Coming from the right, II and IV split suddenly, while on the left, II and III

gradually deviate from each other. The difference is understood based on the

fact that II and IV are on the same plane parallel to the boundary, while II and

III are on different planes.

Coming from the right in Figure 2(a), n-22 is the last position at which

the Au sublattices II and IV are the same. Since this point appears often in

the subsequent discussions, let us call it the branching point and write it

as nbr(Au) - 22. From the splitting of I and III sublattices we can write

that nbr(Cu) = 23. At the nbr(Au) position, the plane is a Au-rich

layer, and at nbr(Cu) the plane is Cu-rich. Since nbr(Au) < nbr(Cu)

in Figure 2(a), we see that this is the structure of Figure 1(A) rather than I(C).

Let us call this the A-type boundary, implying that a Au-layer is next to the

boundary. The boundary of Figure 1(C) will be called the C-type boundary.

D. TIRANSITION FROM A- TO C-TYPE BOUNDARY

The boundary structure is either the A-type or C-type and not in between.

Therefore, we expect a transition between the two types. In the present formu-

lation many-body interaction is excluded and thus the system is symmetric with

25



respect to the interchange of Cu and Au. This means the transition from A- to

C-type boundary occurs at the 50-50 composition or at Pi 0.

Figure 3 plots the excess amount of Au atoms adsorbed at the boundary

region in the A-type boundary at the 50-50 composition. The value of rAu

in Figure 3 is per one lattice point (for the area of a2) in a plane parallel

A to the boundary. At the same composition, the plot of excess Au atoms in the
C-type boundary is a mirror image of the Figure 3 curve with respect to the

center vertical line.

Figure 4(a) plots schematically the excess free energy a of the boundary at

a constant temperature against Pi. Note:

- r -r .(4)
ii Au CU

Since both the A-type and C-type boundaries exist at the same composition and at

the same temperature, and since 0/3 changes discontinuously as the C-type

boundary changes to the A-type at UJ 0, the transition is of the first order.

The curve in Figure 3 crosses the center vertical line at about kT3 ll

0.515. At this temperature the rAu remains zero when we go from the

C-type boundary to the A-type boundary, and hence the transition is acci-

dentally third order.

Below T3 the transition is again first order, but the curve behave

differently, as shown in Figure 4(b).

Figure 5 shows another demonstration of the transition. The example

is at kT/Iwr = 0.7. As we see in Figure 2(a) and (b), the Au branching point

at this temperature is placed at nbr(Au) - 22. Solid curves in Figure 5

are xb(2) and xt(2) at n-21, which is the point one lattice plane to

the left of nbr(Au). In Figure 2(a), xs(2) and xbt(2) are split

at n-21, while they are together there in Figure 2(b). Figure 5 shows this

behavior by the splitting of x(2) and x (2) at x(2)a0.5.
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1.0 I I I

0.8

0.6

kT

0.4-

0.2

0.0
-4 -3 -2 -1 0 1 2 3 4

rAU x 10-3

Figure 3. Adsorption of Au atoms at the boundary plotted
against temperature. The curve is on one
branch of the free energy surface corresponding
to Figure 1 (A).
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(a)

01

(b)

Figure 4. Schematic diagram of a versus p' at
a constant temperature. (a) is for
T above T and (b) is below.
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Figure 5 indicates another phase transition at about x(2)=0.54. For

x(2) < 0.54 the branching positions are nbr(Au) = 22 and nbr(Cu)-2 3.

For x(2) > 0.54, the latter shifts to nbr(Cu)-2 5 , as shown in Figure 6.

It is worth noting that I and III sublattices on the n=23 plane are split,

although the plane is sandwiched between the two planes, n=22 and n-24, on which

II and IV sublattices are the same.

F'. DISCUSSION

Figure 7 plots the excess Au atoms, rAU, against the composition at

kT/Iwl10.7. There are small gaps at x(2)=0.5, 0.542, and 0.458, and they

correspond to the two phase transitions discussed in Section 4 and displayed in

Figure 5.

Figure 8 plots the excess free energy a due to the boundary at the 50-50

composition against temperature. This curve is to be compared with Figures 6

and 10 of Ref. 1. The curves in Figure 8 are monotonically increasing as T

decreases, since this is for a constant P(=iO.O). If we plot a for a constant

composition, other than x(2)-0.5, we expect a maximum at a finite temperature.

For general information, Figure 9 shows 0 versus x(2) at kT/IwI=0.7.
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1.0

0.8 x11 12

0.6n23;

0.4/

0.2 n 21 . 2

n =21 2

n~~ =23 .~---.. 2 1 (2) -n 21

0.44 0.46 0.48 0.50 0.52 0.54 0.56

DENSITY OF Au

Figure 5. The Au density, x(2), on sublattices I and III

plotted against the Au density in the bulk phase

q at kTIIwI = 0.7. Discontinuities at x(2) =0.50

and 0.542 indicate phase transitions.
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1.0

X 11(2) X11(2) AND XIV( 2)

0.8

0.6
XI1l(2)

0.4

Xlv(2)

0.2
X()AND XI1l(2)

12 14 16 18 20 22 24 26 28 30 32 34

n

Figure 6. Density profile of Au atoms on the four sublattices
across the boundary at kT/Iwl f 0.7 and for
11 = 1.3. The overall density of Au throughout the
system is 0.549.
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0.2

0.1

rAu 0

-0.1

-0.21
0.44 0.46 0.48 0.50 0.52 0.54 0.56

X(2), DENSITY OF Au

Figure 7. The excess Au adsorbed at the surface against the overall
density of Au throughout the system. The temperature
is kT/ w =0.70.
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2.0

AT J = 0.0

1.5

U

Ga2 1.0
~IwI

0.5-

0
0.0 0.2 0.4 0.6 0.8 1.0

TK
Iwi

Figure 8. The excess free energy a at the
stoichiometric composition plotted
against temperature. Within a
crystal plane parallel to the
boundary the a ea per lattice point
is written as a.
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0.5
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0.4 0.5 0.6
X(2), DENSITY OF Au

Figure 9. The chemical potential V~ plotted against
the density of Au in the bulk homogene-
ous phase.
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APPENDIX B

THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE*

Ryoichi Kikuchi

Hughes Research Laboratories

ABSTRACT

In the fcc lattice a boundary is formed when the stacking is ABC... on the

left-hand side and CBk... on the right-hand side. The structure of this

boundary is calculated using the cluster variation method (CVM). A hexagonal

lattice is used as the reference lattice; the original fcc lattice occupies 1/3

of the reference lattice. A three-layer rhombus prism is chosen as the basic

Uq cluster of the CVM. The grand potential of the entire system, including the

boundary region, is minimized with respect to the basic variables. The set of

simultaneous nonlinear algebraic equations for 90,000 variables is solved

iteratively using a CRAY computer. Properties of the boundary, including the

excess free energy and the density profile across the boundary, are obtained.

The calculation done so far is for one temperature and for the (110)

orientation. Calculations for more temperatures and for (112) orientation are

being planned.

_I

*Supported by U.S. Army Research Office.
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K 1. Introduction

In a series of papers, we have theoretically studied str'iccures of phase
boundaries. The theoretical method we used has been the cluster variation

method (CVM).5 One of the most recent works in the series has been the study of

a two-dimensional grain boundary4 in which we discovered that the boundary

changes from the low-temperature crystalline state into a high-temperature

"A liquid-like state at a temperature region much below the bulk melting

temperature. In the study we used a square DSC lattice as the reference

lattice, and worked with a model where atoms in the stable crystalline structure

occupy one out of five DSC lattice points.

This paper is an extension of Ref. 4 and is the first attempt to calculate

the three-dimensional grain boundary. The model we will use can be briefly

summarized as follows. The fcc structure has the ABCABC... stacking while the

hcp has an ABAB... stacking. In the fcc lattice, when the left-hand side has

the ABC... stacking and the right-hand side the CBACBA... stacking, a boundary

is formed between the two sides. The structure of this boundary is the subject

of our concern here.

Goodhew, Tan, and Balluffi 6 reported an experimental study of this

boundary. We will supplement these experiments and will elucidate the structure

of the boundary.

2. Model

The (111) plane of the fcc lattice is a two-dimensional triangular

sublattice, which is called B. We supplement this sublattice, B, by two more

sublattices, A and C, which are linear translations of B, as shown in Figure 1.

w We call the (Ill) plane of Figure 1 layer 1, and the (111) plane above it layer

2. In layer 2 the lattice points are directly above the C position and we

supplement them by A and B triangular sublattices, as shown on the left-hand

side of Figure 2. The A lattice points in layer 3 are similarly supplemented by

* points B and C. Together, lattice points A, B, and C form the reference lattice

on which atoms can be located.

In Figure 2, A, B, and C sublattices are marked with a circle, a square,

and a triangle, respectively, and the original fcc lattice points are indicated

*by filled marks. The left-hand side is the ABC... stacking and the right-hand

side is the CB4... stacking. The center of the boundary is indicated by broken

lines.
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B

U

~Figure 1. The reference lattice points A,
" , B, and C on the layer "1" of

the fcc lattice

.The interaction energies are assumed to be as indicated in Table 1. When

-! an atom is at 0, no atoms can come to points I or 4. The distances 0-2 and 0-5

-' are the same and are the nearest-neighbor distance of the original fecc lattice.

• In order to treat the ABC-CBA boundary problem of our present interest, it
~is necessary to include the third layer interaction and distinguish the ABC and

" ABA stackings. For this purpose we include the 0-8 and 0-9 interactions, as in

i Table 1. The 0-9 interaction is favored for the f cc stacking, and the 0-8 is

i favored for the hcp stacking. Since our system is fcc, we choose the parameter

!i•  CF > 0 (attraction) and CH ( 0 (repulsion).

~In formulating the mathematics of the problem ye number the lattice planes

:. parallel to the boundary as n-l, n, nI-l,..., as shown in Figure 2. On each

L9 plane we distinguish nine sublattice points K-l,...,9 as shown in Figure 2. The

. point '(=1 on layer 1 is marked by a circle and =2 by a square, and so on. Note

~that vertical to the layer shown in Figure 2, the circle points form a line,

i. while the square points form a line of their own, and the triangle points form a

•line of their own. Thus, for example, on the plane n, a 'c=. point is about a

,_ =I point.
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A A A A

K-9 Ks9

0 0°0° I 0

SK -4 K-4

o 0 0ic,=o o , (-o

K-5 K-5
LAYER 0 0 10 0 0

2 K-4
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K-54

0 0 0 0

0 0 0

A. A A I A A

1-1 =3

Kc- 2 K s2
00 0 0 0

A A A
K-3 K-3-

nn n 1

Figure 2. The ABC and CBA stackings in the fcc lattice.
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Table 1. Definition of the Interaction Potentials

12263-17

Vt
LAYER'.0

39
8 g PAIR ENERGY

0- e 0

0 -t 0
60 1 6 0-9 -EEF

LAYER5'000- E
2 0-7 0

1 1 1 0 0 0 - 5 - C
0-4 EXCLUDED

"I o- 3 0
3 0-2 -C

0-1 EXCLUDED

LAYER 00'*

0

The boundary plane in Figure 2(a) is parallel to the (110) plane of the fcc

lattice. Another boundary shown In Figure 3 parallel to the (112) plane can

also be formulated using a similar technique and will be reported later.

3. Variables

In treating this problem using the CVM we have chosen a three-layer rhombus

prism as the basic cluster. It is true that a three-layer hexagon prism leads

to a better approximation, but it was not used because it would need larger

memory space in computers. The variables we use in the formulation are

illustrated in Figure 4.
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A0 0 0A 
0 A 0 0

LAAER 0 A0 0 A 00

3AE 0 (C)

(A) 0 0 0 A 0 0 0

A 00 ~ 0 0

0 A 0

uA 0 0 A 0 0 A 03 0

LAYER 0 A 0 0 A 0 0 A 0 (A)
2

10) A 0 0 A 0 0 A 0 0

0 A 0 10 Ai 0 0 A 03

0 a U 0 A U 0 A 0

LAYER A U 0 10 A 0

B) 0 A a 0 A U 0 A * B

A 0 111 03 0 A U 0

0 A U 10 0 0U

Figure 3. The (112) boundary corresponding to Figure 2.
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V3 U3 P3

71

V2 U2 P2

Figure 4. The shapes of the clusters used in the CVI treatment.

a. V2 and V3 Variables. Configurations of a rhombus are numbered as in

Table 2. Note that we distinguish three orientations of the rhombus: left-

tilted, horizontal, and right-tilted. Using the numbers in Table 2, we write

the probability variable of a three-layer rhombus prism as V3n,;i,jk.

The subscripts i, J, and k take one of the numbers in Table 2, i being for the

bottom layer configuration, and j and k for the middle and top layers,

respectively. A rhombus has two diagonals. The two points at the ends of the

longer diagonal lie on the same k lattice points in Figure 2. The subscript k
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Table 2. The Definitions of the Rhombus Configuration
Numbers. A dot represents an atom.

12263-18

n n n

<T> 13

7

2 14
8

3 N<L 15

9

10

5 ~17

12

V
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is this K number for the end points of the longer diagonal. Because the

orientations of the three rhombi (on the three layers) of a prism are the same,

we have a restriction on the iJ, and k that all three numbers are in one of the

three columns in Table 2; numbers of different columns of Table 2 do not mix.

Because of the exclusion requirement in Table 1, when the bottom layer has

configuration 2 (in Table 2) the middle layer cannot be 2 or 6. This exclusion

relation is written in Table 3.

Table 3. The Exclusion Matrix
MXClV (1,J)

12263-19

ABOVEj

BELOW, 1 2 3 4 5 6

1

3 X

4" X

5

6

(MXCLV] i, j

In addition to the V3 variables we use V2n,k;i,j for the 2-layer

rhombus prism. The meaning of the subscripts are similar to those for V3.

The precise definition of the V3 variable is that out of N rhreilbi of the

(n,k) kind, the number of rhombi which have the configuration (i,j,k) is

V3n,k;i,j,k"

The V2 variables can be evaluated when the V3 variables are given as

V2 nF- V3 .- FV3 (3.1)
nk~ij k n,k;i,j,k k nkM3;k,i,j

45

I



where kM3 is the k-number of the lattice point one layer below k, and is

calculated as

kH3 =OD(k + 5,9) + . (3.2)

b. V2 and V3 Variables. There are two triangle orientations, left-

pointing and right-pointing. The configurations of a triangle are numbered in

Table 4. The probability variables for the three-layer triangle prism are

written as V3nk;i,j,k , where k is for the left or right tip of the

triangle. The subscripts iJ, and k are for the configuration of Table 4, and

no numbers on different columns of Table 4 mix. The exclusion requirements

corresponding to Table 3 are

I J and J A k except i j 1 and Jk . (3.3)

Table 4. The Definition of the Triangle
Configuration Numbers. A dot
represents an atom.

12263-20

n n

IsI

3 7
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For the two-layer triangle prism, we define V2n,k;i,j. They are

derived from V3's by

V2n,k;i,j k n,k;i,j,k k n,kM3;k,i,j

where kK3 is defined in (3.2).

c. P2 and P3 Variables. These variables are defined in Table 5. The

exclusion requirements are the same as in (3.3). The reduction relations

similar to (3.3) hold.

Table 5. The Definition of the Pair and Triplet
Variables. A dot is an atom.

12263-21

P2n, K ;ijP3n, K ; ;i. k

,11,11

2,1 2,1,1

1.2 1,2,1

1,1,2

2,1,2
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d. Reduction of U3 from V3. The variable V3n,k;i,j,k can be derived

from either of the three orientations of V3. As a preparation of this reduction

we write the relatLons among two-dimensional triangles (written as Xn,k;t)

in Table 4 and two-dimensional rhombi (written as Yn,k;i) in Table 2.

They are

6
X n,k; £ = L [XLYL]LI Yn-l,kp2;i

iJ=l

6
f l [XLYC]J;j Yn,k;i+6 for t ~l,...,4 (3.5a)

6
, II [XLYR];i Yn,kpl;i+12

for the left-pointing triangle, and

6
Xn = [XRYL];i Yn,kPl;i

il

6
= E [XRYC].t;i Yn,k;i+6 for #,=l,...,4 (3.5b)

6

"2 [XRYR]t;i Yn+l,kP2;i+12i-Il

g for the right-pointing triangle. The matrices [ ] are defined in

Table 6. The subscript kPl and kP2 are defined as

4
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Table 6. The Definition of the Matrices to Connect Rhombus
Configurations (i) to Triangle Configurations()

12263-22

1 2 3 4 5 6

2 1[XLYLJ 1;j [XRYRJ1.;

31

411

7 8 9 10 11 12

*2 11 (XLYCII;j

31

41

13 141 15, 16 17 18

1 1 1

2 1 [XLYRII Ji - XRYL~t.

3 1 1

41

7 8 9 10 11 12

5 1 1

6 1 7 (RYCJ 1; j

* 71

81
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kPI =k+ ,

except kP1 k - 2 when HOD(k,3) 0 , (3.6a)

and

kP2= k -

except kP2 = k + 2 when MOD(k,3) 1 I . (3.6b)

Using the matrices defined in Table 6, we can write the reduction relations

of U3's from V3's as

6
nk;t,,n L. [XLYL3] t,m,n;i,j,k V3n-l,kP2;i,j,k

ij kl [L3],m,,n;ij,k n,k;i+6,j+6,k+6 (3.7)

6
= [ XLYR3]t V3
L m,n;i,J,k n,kPl;i+12,J+12,k+12 '

i,j,k-1

where we define

[XLYL3]Jm;ijk = [XLYL]t;i [XLYL]m;j [XLYL]n;k (3.8)

and similar relations for [XLYC3] and [XLYR3]. In the subscripts of U3 on the

left-hand side of Equation (3.7), n appears twice, first for the lattice

location and then for the triangle index (n1,...,4), but no confusion is

expected. In Equation (3.7) X,m and n are from 1 through 4.
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The relations corresponding to (3.5b) are

6

U3 =[XLYR3jX V3(39
n,k;t+4,m+4,n+4 L m,n;i,j k  n,kP1;i,j,k

and two more expressions.

e. Reduction of P3 from V3. The variables, P3's, can be written as linear

combinations of V3's. For example,

6
P3n,k; ,m, n L [PV2 ]tmn;ijk V3 n,k;i,j,k (3.10)

i,j,k-l

This is for the top lattice point where the atom sits in configuration 2 on the

* left column of Table 2. We can write similar relations for configurations 2, 3,

and 4 of Table 2 using matrices [PV31, [PV4], and [PV5]. These matrices are

defined in Table 7.

4. Grand Potential

The mathematical procedure of calculating the equilibrium state is to

minimize the grand potential, G, keeping the chemical potential fixed. The

function G is defined as

G = - TS - uA * (4.1)

where P is the chemical potential and NA is the total number of atoms in a

system.

a. Energy E. Calculation of the energy is defined in detail in the model

in Section 2. Using the V3 variables, the energy, E, is written as follows:

.... 9 6

E NE Li, L iL J Ok 2 V3fnk;i+ j+ak+u (4.2)
n k-i i,J,k-l M'MO,6,12

where N is the number of three-layer units in a system.
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Table 7. The Matrices which connect Rhombus
Configurations (1) to Triplet
Con Figurat ions (,)

12263-23

1 2 3 4 5 6

1 1 1 1 1 PV2]t; i

2 1 1

1 1 1 1 1- -[PV3]f; i

2

• 1 2 3 4 5 6

1 1 [PV4]If;
2i

1 2 3 4 5 6

1 1 1 1 1 1 [PV5
1
; i

21
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The parameter, ctj,k, is the energy per rhombus and is made of three

y parts:

i, () Jk ) + k + ij + + (4.3)

where is the energy within a layer, c (2) is the energy between adjacent

layers, and r (3 is the energy between the first and third layers.

The energy due to the diagonal pair of a rhombus (for the 1-6 case in Table

2) is counted in three V3's (appearing in three different layers of a V3).

Thus

1 3 16 (4.4)

A pair-wise interaction, , between adjacent layers (for the pair 0-5 in

Table 1) is counted ten times. Thus

C(2) C _ (ED) (4.5)

IJ 10 U

where the matrix, (ED)ij, is defined in Table 8.

(3) ~o
The third layer interaction, c A(, is due to either -ccF or -CC in

Table 1. The vertical bond, -cc is counted 12 times: 4 times in the rhombus

of one of the three orientations (Table 2). The fcc-type interaction, -ccF,

is counted 5 times, i.e., a half of 2  Thus, we write
ij

C (3) c El) + c E) 46
k 12 II (El)ik 5 F (ED)ik , (4.6)

where both matrices are defined in Table 8.

5
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Table 8. The Energy Matrices (ED) for Adjoining
Layers and (EH) for the First-Third
Layers
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ABOVE.[:'o_ ABOVEj!

BELOW- 1 2 3 4 5 6

-,' '1

2 1 1

3 1 1

4 1 1 1 2

5 1 1 1 2

6 2 2

MATRIX (ED)i

• ABOVE k

BELOWi 1 2 3 4 5 6

1

2 1 1

3 1 1

4 1

6 1

6 1 1 2

MATRIX (EH)ik
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b. Entropy S. The CVM entropy expression based on the three-layer rhombus

prism can be derived from the entropy expression for the two-dimensional

triangular lattice based on a rhombus cluster. The latter was derived

previously/ as

S/k [Pair)2 [(Triannle)2 ic
e {Rhombus) (Point) {Rho busl (Pair}]

where c is an integer. When the diagonal pair of the rhombus does not

contribute to the potential energy, the ratio inside [ ]c becomes unity.

When the diagonal pair does contribute, as in the present case, we should use

c - 2. Thus, in the present case, the basic relation is

e S/k {Triangle} 4e - ,- (4.8)

{Rhombus }3 {Point)

The entropy expression for the three-layer rhombus prism is then derived as

4 4
eS/k = - {2-.tr.Dr. , (4.9)

{3--t.rh.pr.1 3 {3-L.triplet} {2-t,rh.pr.}3 {2-t.doublet)

where we abbreviated t, - layer, rh. - rhombus, pr. U prism, and tr. - triangle.
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Writing in fu1l, we obtain

S M T(,k=1 0 3 nk;i+6m,j+6m,k+6m )

k=l ijk1mO

6 2
+ L = i(V2n,k;i+6mJ+6m)

ij 1 -O

4 1

+ 2 k L y(U3n'k;+4m,J+4m,k+4m)
i,j,k=l m0O

4 1

-2 T(U-2 Z ' (Un,k; i+4m, J+4m)

i,j=l m=O

-
t ?(P3n,k;ij,k) + T(P2flk;ij

i,j,k=l i,j= (

(4.1o)

where we define

l (X) XLnX - X • (4.11)

In Equation (4.10), N is the number of three-layer units in a system as it was

In Equation (4.2).
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c. Chemical Potential Term. In the chemical potential term, -UNA in
(4.1), we need the number of atoms, NA, which we write as follows. Each atom

is counted 12 times in a 3-layer rhombus prism of one orientation (left-tilted,

horizontal, or right-tilted, as in Table I). Therefore,

9 6 3
-N (A + A + A) E V3

A 36 i 1 k n ,k;i+6mJ+6mk+6m (4.12)

where Ai is the number of atoos in the rhombus configuration (i 1,..., 6,

in Table 2), and is defined as

A, M 0 for i - 1

A, M 1 for i - 2, 3, 4 and 5

Ai = 2 for I - 6 . (4.13)

5. Basic Equations

The equilibrium state of the boundary is derived by minimizing the grand

-potential, G, and keeping the chemical potential, 11, fixed. In so doing,

- several comments are in order.

a. Choice of Independent Variables. We choose the V3 variables for the

basic cluster as Independent. Other variables, V2, U3, U2, P3 and P2, are all

for the subclusters of the basic cluster and can be written as linear

combinations of the V3 variables, as was shown in Section 3.
I

b. Constraints on the Independent Variables. Although we choose V3's as

the independent variables in minimizing G, not all V3's are actually

independent. The mutual relatioais to be satisfied among V3's are of three

kinds. The example of the first kind is the equality in Equation (3.1). The

constraints of the second kind come from the three ways of writing V3, as in

Equation (3.7), and additional three ways in Equation (3.9). The third-kind of

constraint is the normalization relations:

5
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6
L V3 n,k; i+6m, j+6m,k+6m~i, j,k-I

for each n,k, and m=0, 1 and 2 (5.1)

In minimizing G with respect to V3's, we use the Lagrange multipliers, a's,

Y's and X's, for the three kinds of constraints.

c. The Basic Equations. The basic equations for V3s are written as

follows (we use i,j,k=l,...,6.):

V3 =V3 x a(52
n,k;i,j,k n,k;i,j,k exp (gX ) , (5.2)

where the exp ) factor is determined from the normalization relations in

Equation (5.1). The un-normalized part, V3, is written in two steps. In the

first step we include the Lagrange multipliers, a's and y's, mentioned in b.

above, and write

A

-nV3 =XnV3 - a + a
n,k;i,j,k n,k;i,j,k n,k;i,j n,kP3;j,k

4'' "- m n4 {yLLn lLkL2;

in+lkm2;t,m,n [XLYL3]£,m,n;i,j,k

+ yRL n,kml ;+ 4 ,m+4 ,n+4 
[XLYR 3 ] £,m, n;i,j,k (5.3)

* The V3 part does not include Lagrange multipliers, and is written as

InV 3 nk;ij,k BCi,J,k + 8u(Ai + Aj + Ak)/ 36  (5.4)

2 n,k;i,j,k n,k;i,j,k 4 n,k;i,j,k

(5.4)

W The £i,j,k term comes from the energy expression, and the A terms come

from the chemical potential term; we define B l/kT. The last three Xn terms

are
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XtVnk;iJk = Xn V2 nk; ij V2 nP3.Jk] ~ ~

XUn,k; i, J,k = E n1 JXY3 ~~~~,k- m__~ /

+ [XL.YR] X - -, U3 IUnmL4n+4Umnkrnl 4n+41 /

2 P
XPn,k;i,j,k =[PV2J t,m n;i,j,k X 3n .k:..n 1/2

[2n,,;-~mP 2 nkP3;m~n

+ [PV3 ] mn;ijkf Xnn+l.k;L 1/2
[P ~~n+l,k; £,m P2 +lkP3 ;m 112

+ [PV74 ] ~ i ~ P3 n.kPl:t.tu.n
m n- J~k [ 2 n,kPl;tLm P2nkPlP3;m~ 1i/2

+ [PV5 ltm~~ij,, n 1/2
~~n+l,kP2;-t,m 2n+l,kP2P3;m,n1

(5.5)

We derive similar expressions for V3fl k~i+6,J+6,m+6 and

U v3nlk;i+12,J+12,k+12, but the exact equations will not be listed here. In

the latter we use YLR and YRR corresponding to Y's in Equation (5.3). The

expression for v~~~+,+,+ contains all four kinds of Y.
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6. Iterative Solution

We solve V3's from the basic equations and constraints using an Iterative

procedure called the natural iteration method (NIM).8 The NIM is separated into

the major iteration and the minor iteration.

a. The Major Iteration. (1) We start with the input values, V3's.

(2) The subcluster variables V2, U3, U2, P3 and P2 are derived from V3 by the

reduction procedure of Section 3. (3) Using (5.4) and (5.5), we calculate V3.

(4) The un-normalized V3 in (5.3) is written using the Lagrange multipliers X's

and Y's. Using the inor iteration process to be explained in (b) below, the

values of ('s and Y's are determined so that the constraints on V3's are

satisfied. (5) After the -ninor iteration, the normalization factor, X's, are

determined from Equations (5.2) and (5.1) to end up with the output, V3, of one

major iteration step. This output is used as the input, V3, in step (1) above.

b. The Minor Iteration. We determine a's and Y's in Equation (5.3) for

the given V3 in such a way that the first and second kinds of constraints

mentioned in Section 5b. are satisfied. When we use Equation (5.2) In the

first-kind constraint (3.1), we write

ep"a ;i+6mJ+6m k=le nP , k;i+6mJ+6i)Vnk;i+6mJ+6mk+6m

= exp ( tcik;i+6mj+6) Fili exp n,k;i+6m,J +6m 3nk3;k+6mi+6m, J+6m

M - 0, 1 or 2 . (6.1)

Because V3's satisfy the normalization of Equation (5.1), we can choose a for
i=j-1 as zero without the loss of generality:

n,k;l+6ml+6m 0 , m 0 0, 1 or 2 (6.2)

60

w



When we use Equation (6.2), we can eliminate the normalization factor, A, by

forming a ratio of Equation (6.1). We define

6

BLn,k;i+6mj+6m L V3 n,k;i+6mJ+6m,k+6m
k-l

6BR -- V3• 63

n,k;i+6m,J+6m k 3 n,kM3;k+6m,i+6m,J+6m (6.3)
k-1

Then we solve Equation (6.1) in the iterative form as

(out) a(in)nk;i+6m,J+6m nk;i+6mJ+6m

+L .BR
+ a I BR j~~+mi6 ~~tml6 (6.4)I BLn,k;l+6m,1+6m BRn,k;i+6m,J+6m]

where ba is a damping factor. When ba - 0, a(out) is equal to

a(in); b. - 1 is the case of no damping. In the actual computation we

used ba - 1/4.

Using a procedure similar to the above for a, we derive the minor iteration

relations for Y's as follows: In order to satisfy the two constraint equations

in (3.7), we derive

n i %~LL,, GLLR n •k .I

YLL (out) = yLL(in) lb n.[GLLk.m,, n.k:1.1.1
n,k;imn n,k;Zmn 2 2 b n LGTLLnk*L 1 GLLRnk;£mn , (6.5)
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and

YLR (out) YLR (in) + LIL b(L--RRe ..- A 1 65
.i, k;, m,n n,k;Xm,n 2 y LGLRL GLRR J (6.5)n n,k;l,l,1 n,k; ,m,n

wherce we define

6
GLLLn,k;t,m,n - [KYL3]jm,n;I,J,k V3n-l,kP2;ij,kt, j,k=l

GLLRn,k;4,m,n L [)YC3 ]t ,mn;i,j,k V3n,k;i+6,J+6,k+6
i, j,k=1

6 ^
GLRLLn,k;xlm, n  L [KLYR3 ]t mln;iJ,k V3n,kPl;i+12J+12,k+12

i, j,k-1

6^

GLRRn,k;t,m,n [XLYC3] X,mn;i,j,k V3n,k;i+6,j+6,k+6 * (6.6)
i, j,k-1

The coefficient, by, in Equation (6.5) is a damping factor of similar nature

as be in Equation (6.4). In the actual calculations we used by - 1/2.

We have two more constraint relations for V3 in the right-pointing triangle

variables in Equation (3.9). These two constraints derive YRL and YRR, but the

detals are omitted.

qP
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7. Homogeneous Phase

Before calculating the boundary structure, we solve the equilibrium state

of the homogeneous phase. We can use the same equations designed for the

boundary and simply make the variables independent of the lattice location, n.

The homogeneous system is made up of three sublattices. Referring to

Figure 2, the three are

KI 1, 5, 9,

i 2  2, 6, 7,

3 3, 4, 8, . (7.1)

When the temperature is very high, the three sublattices become equivalent and-I
the system is disordered. For low temperatures when the sublattices are not

equivalent, we can define the long-range order as the difference of the atomic

densities on the lattices K2 and I1 :

-P( 2 P(K 1 (7.2)

Note that we make K2 the sublattice on which atoms lie preferentially as in

Figure 2. Figure 5 shows how the long-range order, F, changes as a function of

temperature. We chose the chemical potential as U/c - -40.

A typical calculation of kT/c - 4 and P/c = -4 was timed as follows. The

CPU time used by the VAX/VMC computer was 200 minutes for 450 major iterations.

The corresponding calculation was done in ten minutes using the CRAY computer ofI

77, U.S. Air Force Weapons Laboratory.
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Figure 5. The long-range order parameter in the homogeneous
bulk phase plotted against the temperature at
u/e - -4.0.

8. Boundary Calculations

We use the results of the homogeneous phase calculations as the end

condition of the boundary calculations. We choose

kT/E - 4 and u/c - -4 , (8.1)

which are tor the long-range order of 0.85, as we see in Figure 5.
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a. Width of the System. For the boundary computations we choose the

lattice plane number, n, in Figure 2 to go from I through nw, the center being

at lie = (nw + 1)/2. If uw is too small, the end effect of the system

makes the calculated results unreliable. If nw is too large, the memory space

of the computer cannot contain all of the variables we need. As a compromise we

chose

n wn= 17 and n = 9 . (8.2)

b. Left-Right Symmetry. In the actual computations, we do not need to

work for n from 1 through nw . Since the left- and right-hand sides of the

system are symmetric, we can work for n from 1 through nc + 1 and use the

left-right symmetry relations. We note the following kinds of symmetry:

V3 9-n, fv; k+(I±)6,+(I±)6,i+(1+)6 = V3 9+n,K;t+(l i)6,j+(l)6,k+(l it) 6

for i,j,k = I,..., 6 . (8.3a)

These are for the left qnd right columns of Table 2. For the center column of

Table 2, we have

V3 V (8.3b)
9-n,Kv;k'+6,j'+6,i+6 9+n,i;i+6,J+6,k+6

In these expressions, KV is a function of K and takes the value

-(V = 4,5,6,1,2,3,7,8,9 , (8.4)

corresponding to K 1,....,9. The primes on i', etc. in Equation (8.3b) are

defined as

i'-=i ,

except i' 2 when i 3

and

"' 3 when I 2 . (8.5)
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The symmetry relations for a's are

IM9-n,Ka;j+(2-m)6,i+(2-m)6 -a9+n,k;i+6m,J+6m

for i,j - 1,...,6 and m = 0,1,2 . (8.6a)

The subscript, Ka, is defined as

ka - 7,8,9,4,5,6,1,2,3 , (8.6b)

corresponding to K - l;...,9. Note the minus sign on a on the right-hand side

of (8.6a).

The symmetry relations for Y's are

I
YLL 9-n,Icv;n,m,t - YRR9+n,'C;L,m,n

YRL - YLR

9-n,Kv;n,m,t 9+n,'C;L,m,n (8.7)

where we use Kv, defined in Equation (8.4).

c. Initial Values. To start the iteration, the initial values of the V3

variables are chosen as follows. For n , nc - 1, V3's are set equal to

the homogeneous phase values. At the center, nc, we choose V3 as the average

*: of the left-side homogeneous phase value and its symmetry value (calculated by

,. the relations in Equation (8.3). We use the same idea in choosing the initial

values of a's and Y's.

d. End Condition. After the iteration has started, we choose the end

condition at n - 1 and 2 so that the values of V3 at n - 1 and 2 are the same.

e. Computer Time and Memory. When we choose nc - 9, as in Equation

(8.2), the number of variables are 58320 V3's , 9720 a's, and 23040 Y's, giving

a total of 91,080 variables. If we count 9720 V2's and 11,520 V3's instead of

V3's, the total number of variables is 54,000. Using the CRAY computer, 150

major iterations were done in 50 minutes CPU time.
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When we used the CRAY computer at AFWL, the case of nc  9 was done, but

the nc - 15 case was not, due to the lack of memory space. The VAX/VMS

computer has a virtual memory system and could calculate the nc 
= 15 case.

f. Profile. The density profile of the boundary is shown In Figure 6.

The K numbers are those in Figure 2. The K - 2 point is the occupied lattice

point in the homogeneous end-phases. The K - 6 and 7 points are the occupied

points on the left end and the unoccupied points on the right end.

12263-16
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Figure 6. Density of atoms on each sublattice, at
kT/E - 4 and /e - -4. The density of
the homogeneous phase is 0.843.
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9. Conclusion

A model of a three-dimensional grain boundary has been calculated using

statistical mechanics for the first time.

The cluster variation method (CM) is capable of treating such a three-

dimensional problem. A set of simultaneous equations of a large number of

variables (54,000 variables or 91,080 variables, depending on how they are

counted) can be solved using the natural iteration method (NIM).

The CRAY computer can calculate the boundary about ten or more times faster

in CPU time than the VAX/VMS computer.
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Abstract -The characteristics of equilibrium first-order phase changes of the
grain bouindaries themselves are such that it leads to a definition of grain bound-
ary phases in which smoothly curving boundaries are of the same phase. Different
grain boundary phases coexist at facet edges and corners. The phase rule, phase

* diagrams, and some phase change mechanisms are developed. For a wide variety of
problems orientation of the normal is shown to be analogous to composition in
ordinary three-component systems. The role of symmetry in modifying the phase
rule and in sectioning phase diagrams is explored. Reports of boundary phase
changes are re-examined critically.

Introduction - Transformations of grain boundary structures have been invoked
to explain oservations of discontinuities of grain boundary properties as temper-
ature, composition and even thermal history are varied [1-9]. This explanation
has led to the concept of grain boundary phase transformations which assumes that

* grain boundaries are two-dimensional phases, that there can be several distinct
such phases each having a free energy, and that there will be a phase change
whenever these free energy curves cross. At such transitions, properties can
change discontinuously but, as has been pointed out, there are limits [2,10,11].
The boundary free energy can't be discontinuous as has been reported [3).

* Phase changes are of single crytal surfaces are well documented [12-13). Careful
studies on planar surfaces reveal their two dimensional space group symmetry.
Discontinuities in properties, such as adsorption, have not only been documented,
but symmetry changes, which necessarily mark a phase chanige that could be higher
order, occur frequently.

Grain boundaries have rarely been studied with such care, Even the best studies
* .have dealt with curved boundaries and since properties of boundaries, including

their symmetry, depend on orientation, the question of what is a grain boundary
phase needs to be answered before we can ask if there has been a change of phase.

In this paper we defer this question. We assume that there are indeed several
* stable or metastable structures of a grain boundary for each orientation. We

compare these to find the most stable structure or combination of structures.
From this comes the surprising result that only a few specific orientations can
transform ciongruently, i.e. without a change of shape. Almost all grain boundary
phase transitions involves facetting to different orientations. As a consequence,
a natural definition oil grain boundary phases and coexisting phases at equili-

* brium presents itself. The several types of phase transitions then are
re-examined. We include wetting transition in which a phase not stable in bulk
forms along a grain boundary but we exclude the bulk phase changes that originate
at grain boundary.

We begin by specifying the state variables of grain boundaries, examine conditions
for equilibrium and then develop the properties of diagrams of state or phase

* diagrams.

Gra in Boundary State Variables - As with three-dimensional phases, there are a num-
* ber of varlables that define -the state of a planar grain boundary. The structure

and properties of an equilibrated boundary are fully specified when these variables
are fixed. Because the boundary is free to exchange matter and energy with the
grains, it acts as an open system. As a result, temperature and chemical potential

* are the natural thermodynamic variables for describing the reservoir. Gibbs' proof
[14) that temperature and chemic'al potential are constant throughout a system of
sbrfaces and phases is readily extended to include grain boundaries [2,14,15].
Since grain boundary temperature and chemical potentials are specified by temper-
ature, pressure, and composition of a grain, these could equally well serve as

* state variables of the grain boundary. With this latter set the grain boundary
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remains an open system as long as the grain size is large enough that changes in
adsorption will not affect the grain composition. The alternate choice of a compo-
slitional state variable, the level of adsorption, has many disadvantages. It is
not as easily measured and in an equilibrated polycrystalline specimen varies from
place to place on the boundaries.

In addition to these 'standard thermodynamic variables, the state of the boundary
depends on geometric variables. Three angular variables specify R, the misorien-
tatlon between the two abutting grains. Two angular variables specify N, the
orientation of the grain boundary normal. There are four more translational varia-
bles [16] that we will ignore because they are usually, but not always, allowed to
relax to equilibrium. In some experiments the angular variables are also allowed

LV. to relax to equili~brium [17]. Grains can rotate and boundaries can facet to other
orientations. We will specifically assume that R and the average of N are
specified.

The total number of grain boundary state variables is therefore six plus the
number of chemical components. There are five angular variables (R and N), temper-
ature, and either one chemical potential for each of the components or pressure and
the composition. Area is the extensive variable. We will mostly specify area
projected along N. This is the area that is fixed if we specify a planar curve to
be the perimeter of the boundary. The boundary then is able to find a minimum free
energy at the fixed projected area even if that minimum includes facetting or
zigzagging to orientations of lower energy [18).

Grain Boundary Equilibrium - The appropriate free energy is one that is minimized
at equilibrium under the conditions specified by the method of the observation.
We fix the perimeter of the grain boundary to be a plane curve and permit matter
and energy to be exdhanged with the abutting grains of fixed temperature and either
fix chemical potentials or composition and pressure. For grain boundary, as well
as surface equilibrium, it is the excess in E-TS-tijiNi per unit area projected
along N that is to be a minimum [15,18,19]. This excess free energy per unit
area has been variously described by the symbols a or y. We use y.

Equilibration of a grain boundary involves reducing y to its lowest value.
This may involve exchanges of energy and matter with the grains, structural rear-
rangement, and facetting. For the purposes of this paper we consider not just the

4 lowest value of y but several grain boundary structures that are in metastable or
unstable equilibrium. These other boundaries are at stationary values of y that
are local minima.

Such other structures are a familiar concept in metastability. They provide a
* vehicle for the description of first order phase changes in which quite different

structures become the stable phase as the state variables are varied and give
rise to a phase diagram whose dimension equals the number of state variables,
which maps the bounds to the stability of a grain boundary phase.

First Order Grain Boundary Phase Transformations - The simplest way to examine
* grain boundary Phase transformations is to image two or more different grain bound-

ary structures and to examine graphically how their y values vary with one of the
nongeometric state variables. Thermodynamics requires that for these variables
each of the y plots be continuous. Let us examine a range of temperature over
which two such hypothetical y curves cross. For two forms of a fluid surface in a
one component constant pressure system, there would be a phase change between these.

* two forms exactly where the two curves cross. This situation is identical to a
first-order one-component phase change in three dimensions with Gibbs energy
instead of y as the ordinate.

To demonstrate that this simple example is misleading for solid boundaries, we
turn to a familiar problem in another field. It is well known that phase changes

4 in a system with fixed average composition do not usually occur simply at the place
where the molar Gibbs free energies of the phases cross [20-22]. Figure I shows a
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pair of intersecting isothermal constant pressure free energy curves in a binary
system. The common tangent represents a two-phase equilibrium of coexisting
phases, differing in composition, at a lower free energy than either curve in that
composition range. The loci of intersections of free energy curves in such a
system do not mark phase changes. Because only the average composition is spec-
ified, the system is free to seek equilibrium with a lower free energy in a
combination of phases of differing compositions. This is the essential distinction
between the constructions in the one and two component systems: both phases must
have the same temperature, while only the average composition is specified.

Equilibrium is expressed by a convexity theorem, which requires that the isothermal
molar free energy vs. composition curve be convex as seen from below. This convex
curve, consisting of segments of curves and tangent lines, is depicted in Figure 1.
The curved portions represent single phases, the tangent lines represent the free
energies of mixtures of phases whose compositions are those of the contacts. This
construction eliminates not only any concave bulges but also the intersections of
free energy curves. As temperature and pressure change the free energy curves, the
compositions of the two-phase region shifts. These shifts are graphically repre-
sented on phase diagrams. Of special interest are conditions where two free
energycomposition curves touch without crossing. These represent congruent phase
changes,. where two phases of the same composition are in equilibrium.

In multicomponent systems the free energy-composition plot at constant temperature
and pressure is a hypersurface. Equilibrium requires that this hypersurface also
be convex and that concave bulges be eliminated by hyperplanes. The phase rule
[14,20,21) is an expression of how many phases can coexist and has a very simple
geometrical interpretation in terms of these tangents. It must be amended when
symmetry is present, as in mixtures of isotopes or enantiomorphs [23]. Symmetry
of the free energy hypersurface can permit more simultaneous tangent contacts.

An important aspect of phase diagrams concerns which of two kinds of variables are
chosen as axes [24]. Quantities such as composition need not be the same in
coexisting phases. Hence, they lead to gaps in compositions that are multiphase
regions and to tie lines, tie triangles, etc., across these gaps to indicate the
composition of coexisting phases. Quantities such as temperature, pressure, and
chemical pptentials have the same value in all coexisting phases. If they are
axes on a phase diagram, the tie lines must be perpendicular to these axes. If
all axes are of this type no gaps can occur. Multidimensionalphase diagrams
sectioned perpendicular to such axes are easier to interpret because coexisting
phases always lie within such a section.

We now imagine two different grain boundary phases that are represented by two
intersecting y curves. For the present each curve is assumed to be a continuous
function of all the state variables including N. Does the locus of points of
intersection mark the condition of phase transition? Because of the open system
conditions, the temperature and chemical potentials of all coexisting grain
boundary phases dre the same. Thus we must compare grain boundary phases at the
same temperature and chemical potentials. This is true even if we use grain
compositions as our variables. The geometric variables require special examina-tion. We may try to impose a misorientation R, but grain boundaries are known
[25) to dissociate into several grain boundaries whose combined misorlentations
are equivalent to R. The orientation N has the character that only its average is
usually specified but the boundary Is free to facet or zigzag.

There are several constructions that are useful for examining the N dependence,
Ierring [18] derived a tangent sphere construction for examining stability
which Frank [26] simplified by inverting y in which the test sphere became a
tangent plane. This was then used by Hoffman and Cahn [19,27] to construct & a
vector function of y. Both of the last two lend themselves readily to examining
the N dependence.

q

Frank took the reciprocal of y and showed that a plot of y-1 in polar coordinates
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had to be convex; i.e., any tangent plane to y-1 had to stay outside the y-1
plot. Inward bulges were to be filled in with tangent planes representing hill an(
valley structures (Fig. 1). The geometrical convexity condition for this three-
dimensional surface is mathematically identical to the condition encountered in
three-component phase equilibria. The behavior of N in surface and grain boundary
phase transitions is identical to the behavior of two compositional variables in a
three-component system.

r1N 0

5

L

Composition

Fig. 1 :The same tangent construction is used for the coexistence
of phases, using a cartesian plot of molar free energy vs. composi-

~tion, and of facets, u]sing a polar plot of -y-l(N). The tangent
eliminates all concave portions, whether caused by a bulge in a
single curve or by intersecting convex curves.

The development of the vector leads to identical conclusions. The & vector is
constructed from y [19,27]. The loci of & vectors forms a surface whose inner

v envelope it a closed convex surface whose shape is that of a grain of fixed volume
r embedded within another, misoriented by R, with minimum total grain boundary free
Senergy. The -plot represents the atloreainspresent. Oinain

[ that are unstable with respect to facetting are absent, and graphically seen as
I corners and edges. The edges of any plot mark two coexisting orientations;

corners mark coexistence of more than two orientations. If there were two kinds
of grain boundary structures with intersecting y, there would be two intersecting

plots (Fig. 2), whose inner envelope would necessarily have a sharp edge indica-

ting that certain orientations would always be absent at equilibrium. The coexist-
ing phases would meet at an edge in the C-plot. They would display an edge with
the same orientations in a real specimen at equilibrium.

Convex portions of &-plots outside the inner envelope are metastable, and facet
by nucleation of patches of a new orientation. Portions that are not convex are
unstable with respect to continuous reorientation. Concave bulges in Figure 1
lead to self intersections in Figure 2 with convex and concave portions separated
by spinodals [27-29].

• Except for congruent phase changes, and the unlikely possibility that y is not
A function of N, all equilibrium phase changes involve the formation, elimination,

~or other changes in edges and corners of a grain boundary. Equilibria between
these different structures would almost always occur as observed edges and corners
in a hill and valley structure. Facetting can also occur if we assume a single

lq curve with a concave bulge. Such free energy bulges are analogous to those encoun-I

tered in miscibility gap systems that have critical points. The coexisting phases
are different phases. At such critical points the phases become identical. The
analogy holds for grain boundary phases' 75
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We now propose to define grain boundary phases such that all equilibrium edges and
corners represent coexisting phases. This includes all coexistence based on the
assumption of several metastable structures with the same N. In this definition
curved grain boundary without singularities in its shape is all of the same phase.
The structure of this grain boundary phase varies as the orientation changes, just
as the structure of a chemical phase varies over its composition range. Phases
differing by a first- -order phase change* coexist at edges and corners (except
when it is a congruent phase change). Singularities in shape other than discontin-
uities in orientation represent higher order phase changes.

Fig. 2 :The inner envelope of a
C plot shows the actual ori-
entations of stable boundaries.
Orientation discontinuities (edges)

0 represent coexisting orientations
(facets). Intersecting plots
necessarily lead to orientation
discontinuities. Self intersecting
portions of the g plot result
from bulges in y-1 plots, and
show "ears" with inelastable
convex portions and unstable con-
cave portions separated by spinodals.

Sometimes the coexisting grain boundary phases have identical properties by symme-
* try. This, too, has an analogy in three-dimensional phase diagrams. Systems with

enantiomorphs have different phases that are mirror images of each other with
* identical properties. As in the case of enantlomorphs, symmetry leads to modifica-

U tions of the phase rule for grain boundary phases [23].

* We began by assuming the existence of two different structures with two dif-
* ferent y curves and concluded that, except for the congruent orientation where two

different planar boundaries transform into each other, most phase changes involve
the formation of patches of grain boundary with different orientations.
We also began by assum Ing that y was a continuous function of N. This, too, is not
essential. Frank's y- and our & plot are continuous convex figures even if y is
is not. Planes or ruled surfaces alternate with doubly curved Rortions. In the
polyhedra as the curved portion have shrunk to points on the y-q plot and have
become the planes on the & plot.

The convex y-1 plots are continuous functions of N. The Gibbs adsorption equa-
tion insures that y is a continuous function of R and the chemical potentials.

* Stability consideration requires that y either be continuous in R or dissociate
Into boundaries whose combined y is continuous in R. Thus y is continuous through
phase transitions whether the transition is congruent or proceeds by facetting, or
which of the state variables is varied. Reports that y be discontinuous is con-
trary to thermodynamic stability principles. It cannot be explained by any arti-
fact such as impurities [3,5] which, after all, are just chemical components.
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Many correlations follow from this rigorous mathematical analogy between orienta-
tion of surfaces and composition in a three component system. These will be
developed in the next section as part of an examination of all the state variables
and the full phase diagram.

Grain Boundary Phase Diagrams - We next examine a space of all 6+C state variables,
where C is the number of chemical components. Five axes are angular variables,
three to specify R and two to specify N. These specify temperature the chemical
potentials or activities of the components. Each point in this hyperspace repre-
sents a state of a grain boundary. Some regions represent stable planar boundaries
of a particular phase, other regions represent the fact that a boundary with these
state variables is decomposed into segments of several boundaries, each segment
being of a different phase.

The examination of this hyperspace is greatly simplified by the realization that
any set of coexisting grain boundary phases share the same temperature and chem-
ical potentials. Hence grain boundary phase diagrams can be sectioned at constant
temperature and chemical potentials with the knowledge that all tie lines (or tie
figures of higher connectivity), connecting points that represent the coexisting
boundary phases, lie entirely within that section. This section still has the five
dimensions of the R and N axes, but the 6+C dimensional diagram can now be thought
of as an evolution of five-dimensional diagrams as T and the chemical potentials
are varied.

The five-dimensional diagram can be sectioned further. If all facets have the same
misorientation R across them, then all tie figures lie within a constant R section.
This is a two-dimensional section with N as its axes. Such N diagrams have the
features of an isothermal constant-pressure section of a ternary phase diagram
plotted onto the surface of a unit sphere instead of an equilateral triangle.

Although R can be imposed by creating a bicrystal with that misorientation, the
system will dissociate this boundary into several with a combined R equal to the
original misorientation if that will lower the energy. One such dissociation has
been demonstrated [25]. When a high energy boundary has the combined misorien-
tation of two known low energy boundaries, such as twins or special coincidence
site boundaries, such boundaries dissociate. The resultant coexistent boundaries
have R values different from the imposed R and therefore do not lie in a constant

*. R section. The twin part of the dissociated boundary has been observed to facet
[25). In this case the tie lines cannot be counted on to be perpendicular to any
axis. Unless there are some special symmetries, the representation of the phase
coexistence requires the full five-dimensional space.

The construction rules for coexistence of dissociated boundaries differs from that
of the usual phase diagram. The combined R is conserved in a dissociation, where-
as the average N or composition is conserved in facetting or phase separation. As

V a result, the limits of regions that represent undissociated boundaries do not
represent R values of the components of a dissociated boundary. No method of re-
presenting dissociations on the diagram has been suggested.

The sections of the C+6 dimensional phase diagram parallel to temperature or
chemical potential axes may have tie lines at an angle to the section. This is a
familiar complication in "vertical" sections of ternary phase diagrams in which
temperaturb or pressure are the vertical axis. If there is no dissociation, such
sections should look quite similar to such vertical sections.

Vertical sections containing all tie lines exist for ternarles. These sections
are true binaries. They are sometimes called quasibinaries. Symmetry is an im-
portant guide for finding such vertical sections for grain boundaries. (Vertical
sections of surface phase diagrams have been given [12,13] for symmetric orien-
tations.) 77
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The Phase Rule - Many years ago, Defay [31,32] proposed a surface and interface
phase rule for systems with several bulk fluid phases and allowed for possibility
of a multitude of. interfaces between pairs of different phases. He dealt only
with the usual C+2 state variables. His phase rule should not be applied to

-solids because it does not take into account the multitude of solid phenomena,
e.g., orientation effects. What we develop here is a localized grain boundary
phase rule for a single phase polycrystalline solid. It deals with how many grain

* boundary phases can coexist at a point on a grain boundary and whether this coexis-
tence remains if we change the state variables. The rule is easily modified if

. there are several bulk phases but it remains a local phase rule. The phase rule
is a useful concept for phase diagrams of first order transitions. The derivation
of a phase rule assumes that all grain boundary phases have different fundamental
equations for how y depends on the state variables. This is frequently not the
case. When high symmetry grain boundaries facet, they will facet into symmetry
related orientations, and the phase rule must be amended for symmetry. Fortun-
ately the y-1 and & constructions are geometrical constructions completely
consistent with the phase rule and, as will be shown, these permit us to specify
what happens at the exceptions.

When all grain boundary phases are different, the phase rule specifies that the

:1. degrees of freedom F is given by

F-C-P+7 (1)

where C is the number of chemical components, and P the number of grain boundary
phases all nonequivalent. When there is more than one bulk phase the phase rule

becomes

. F= C - (P + PB) + 8 (2)

where PB is the number of bulk phases.

If R, T, and the chemical potentials are specified (or equivalently pressure and
the composition), we obtain the rule for an N diagram, again for nonequivalent
phases.

F- 3 -P (3)

which is the same as for a three-component phase diagram at constant T and
pressure. We examine these N diagrams with special emphasis on the symmetry
effects. Because crystal surfaces share all the same state variables with grain

* boundaries except R, the properties of this section apply equally to surfaces.
We have given a more complete treatment for surfaces.

1 The N Diagram - In order to examine the properties of an N diagram, we assume
that a11 tie lnes lie within that section. R is assumed fixed and stable with
respect to dissociation. We then know a great deal about the properties of
such a section for it is equivalent to a isothermal constant pressure section of
a three-component phase diagram plotted on the surface of the unit sphere instead
of an equivalent composition triangle.

We first examine phase coexistence when all phases are nonequivalent. In an N
diagram, because R, T, and the chemical potentials are specified, equation (3)

, applies. Single-phase regions have the two degrees of freedom that permit N to
range. Smoothly curved boundaries in an experiment plots are single phases. So
are smoothly curved regions of a C plot, as are those curved convex regions on
a y- plot. The single phase on the N diagram can occupy the entire unit
sphere, or it can be bounded by phase changes. Two-phase coexistence is repre-
sented by two curves (F - 1) connected by tie lines representing coexisting
orientations. The space on the diagram between the curves are forbidden orien-
tations, edges in an experiment and on a c-plot. The tie lines and coexistent
phases are formed by a rolling tangent plane on the y-1 plot. Tie lines are 78
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great circle segments, whose poles are directions of the tangents to the edges
they represent.

These two-phase regions may form smooth closed curves. They may also terminate
at critical point where the two phases have become identical or at three phase
coexistence. On a C-plot critical points are end points of edges in which
the crease terminates and is smooth thereafter. It is represented by a termina-
ting orientation gap on an N diagram. Three-phase coexistence is a corner in the
experiment or on a C-plot, a tangent contacting the y-1 plot at three
points. It is represented by a tie triangle on the N-diagram.

To obtain congruent points-or "more than three-phase" coexistence, one or more of
the other state variables must be changed, or symmetry has to be present.

Both y as a function of N and the N-diagram must obey the Wulff group point
symmetry W imposed by R [33]. For surfaces this point symmetry is that of the

* . crystal. For grain boundaries, it is derived [16,34,35] from the point
- symmetry of the grains and R. The set W of resulting point groups include the

usual 32 point groups plus 14 additional with 8 and 12 fold axes, a total of 46.
We call these latter point groups octagonal and dodecanogal.

The effect of. symmetry is most easily seen using the &-plots. Nothing is
changed for single and two-phase coexistence, which are still represented by
surfaces and curved edges. Only two surfaces can meet at an edge of a convex inner
envelope. More than three surfaces can meet at corners. We may use crystal-
lographic form theory [36] to specify how many.

For the 32 classical point groups, there are 47 forms resulting from intersections
of planes that are equivalent by symmetry. Many are prisms and pinacoids composed
of-planes parallel to an axis, that do not form corners. The remainder have
corners where three or more equivalent planes meet. Corners also result from
combined forms in which planes that are not all equivalent intersect at a point.
There are additional forms that originate in the octagonal and dodecagonal point
groups.

There are two classes of forms. There is one general form, in which the planes
haye general indexes, for each of the 46 point groups except 1. There are in
addition special forms for special Miller indexes.

We examine all the forms for corners. Table I gives the number of facets along
the axis for tetragonal, hexagonal, octogonal and dodecagonal forms for general
indexes and the two kinds of special indexes that do not give pinacoids or prisms.
This number is equal to the number of coexisting facets if the basal plane facets.
Figure 3 shows the dihexagonal dipyramid and the trigonal diepyramid. These are
general forms in the hexagonal (r = 6) system for 6/mmm and 6 respectively show
12 and 3 sided corners. If the basal plane were to facet into planes with general
indexes, there would be 12 and 3 facets if the Wulff group were 6/mmm or Frespec-
tively. It is interesting to note that the number of faces either remains the same
or decreases if faceting occurs at a special orientation. The indexes of the
facets, of course, refer to those of the dichromatic pattern or the two interpene-
trated crystals and not to those of either crystal.

Table II gives the number of facets in the cubic system if either the cube plane or
the octahedral plane facets. The numbers divisible for 3 are those for the octahe-
dral plane. Whenever there are parenthesis around them (111) and (I-l) give dif-
ferent answers. In contrast to Table I, the number of facets is often larger for
special orientations. Allfaceting of basal planes in the trigonal system yields
3, except for hkil and hh2hl in point groups 32 and 3m which yield 6. Four-sided
corners occur along the 2-fold axis in mm2 and along all three axes in mmm for

4special indexes only. All other four-sided corners arise from mirror planes or
combined forms. 79



Dihexagonal dipyramid Trigonal dipyramid

Fig.1 3 :Forms of 9 Plots must conform to the symmetry of the Wulftf
group. The basal plane will facet into 3 and 12 orientations for 6

* and 6/nwim respectively. Note also the meeting of four orientations
* at the mirror plane in 6/mm.

Table 1. The number of equivalent facets replacing the basal
* plane, listed by point group and facet indexes when

the rotation axes are r-fold with r - 4, 6, 8, and 12.

Point Group Facet Index

hkllI hohl h h2Mi

r r r r
r r12 r/2 r/2

r/m r r r
r22 r r r
rMM 2r r r
rm2 r r/2 r

rfmrmm 2r r r

Table 11. The number of equivalent facets replacing the cube and octahedral
planes for cubic systems.

V Point Group Facet Index
hhl

hkl 131 h<T hk0 111 110 100

23 2,3 4,3 2,(3,6) 2,3 2,,j3) 4,3 3
m 3 4,3 8,3 4,3 2,3 4,3 3

432 4,3 8,3 4 3 4,6 4 4,3 .3

43m 4,6 4,3 2,t3,6) 4,6 2,(3) 4,3 3
.3. 8,6 8,3 4,3 4.6 4 4,3 3
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Four-sided corners arise along mirror planes whenever an edge intersects a mirror
plane. This can be seen along the basal plane of the dihexagonal dipyramid. It
also occurs in combined forms in systems with symmetry as low as m (Fig. 4).

Although these multiphase equilibria range from P - 3 to P = 24 they occur in N
diagrams without requiring more degrees of freedom than for P - 3. If a tangent
plane contacts the y- surface at three equivalent points, it contacts all

, points that are equivalent by symmetry. If a tangent plane contacts two points on
one side of a mirror, it can contact either none or two points on the other side.

If we use the other degrees of freedom to adjust the relative y values of different
phases, we can achieve multiple contacts in combined forms. Each additional form
requires a degree of freedom, just as it does when all phases are different in
equation 1. No more than three facet orientations are ever needed to reach a
minimum free energy [37] for an undissociated boundary, or for each component
boundary in a dissociated one. When the phase rule permits more facets, many
degenerate structures are possible.

For the purpose of the phase rule, two phases related by symmetry count as two
phases, while three or more count as three phases. M pairs of phases related by
a mirror plane count as M+l phases.

The Search for Congruent Transformations - Congruent phase changes do not, in
general, occur In a constant R, T and chemical -otential section. This can be
easily seen from the phase rule and from the y or C plots. Congruent points
occur on these plots only when the y-1 or C plots of one phase contacts the
other at a point without intersecting. We therefore need to adjust one of the
other state variables to obtain precisely this condition. The search for congruent
transformations has all the aspects of a search for a needle in a 6+C dimensional
haystack. Nonetheless one congruent phase transformation has been found experimen-
tally and theoretically, making use of known symmetries. Congruent phase changes
are likely to occur at high symmetry orientations because y has an extremum there
and the tangent contact requires the same slope for both phase. But there seems to
be no increase in the degrees of freedom because of symmetry for this transition.

Glicksman and Vold [38] found a congruent grain boundary melting transition in
bismuth, as the varied R. The rotation axis was the trigonal 3 axis. For a
general rotation the dichromatic pattern symmetry is 3m' with the colored mirror
planes bisecting directions in the two crystals related by the rotation. The
Wulff group symmetry for y is thus 3m. The symmetric tilt boundaries studied lie
along these mirror planes. Mirror planes by themselves do not guarantee a symmetry
dictated extremum, but in a 3m the mirrors are part of a 2/m axis that is suffi-
cient. These boundaries are likely candidates for congruent transformations as R
is varied. The nonsymmetric boundaries that do not lie along the mirror planes
facet on cooling through the melting transition [39].

A congruent melting transition was also found theoretically [40] by varying T
for a symmetric E = 5 boundary in a two-dimensional square lattice gas crystal.
Again the required symmetry was present.

*: Neither of these studies provided clean examples of how y should vary through a
*: first order congruent transition i.e. that y be continuous but with a discon-

tinuity in slope. In the bismuth experiments, the grain boundaries were equi-
librated with solid-melt interfaces whose-y was measured and shown to be almost
isotropic.. The dihedral angle of the grain boundary groove changed discontinuously

'* at the melting transition.

* One-dimensional features do not show clean phase transitions, only regions of rapid
change. The grain boundary between two two-dimensional crystals is such a one
dimensional feature, and the calculated phase transition had the expected gradual
nature [40]. 81
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The Controversy About Dihedral Angle Discontinuities - In 1970 Gleiter [3]
examined a trijunction in lead and reported a discontinuity in the dihedral angles
as temperature was changed. Gllcksman and Vold [38] reported a discontinuity in
the grain boundary melt groove angle as R is varied. Both sets of investigators
adopted a common fallacy that interprets dihedral angles in terms of ratios
of y's and ignores the torque terms that result from the N dependence of y.

* Since thermodynamics requires y to be continuous at phase transitions no discon-
tinuity in the ratio of y's Is possible. As a result, Gleiter's interpretation
has been repeatedly criticized [2,10,11].

* Much of the discussion has centered on the role of hypothetical impurities. But
-. Impurities are chemical components, and if the system is equilibrated should not

affect the continuity of y. Glelter's claim that the angular discontinuity was
reversible is evidence for -equilibrium.

A close comparison of Glelter's Figures 4a and 4b [3] reveal evidence for the
onet of facets at the transition. Coexistence of facets is not only evidence of
phase coexistence, but it is also evidence of torque terms resulting from the N
dependence of y. As can be readily seen from vector constructions, there is
no violation of thermodynamic principles by a report of a discontinuous change in

Vi two of the dihedral angles when one of the boundaries at a trijunction undergoes a
.* facetting transition.

General Dissociation Transitions - The replacement of one grain boundary with
several, whose combined misorientatlon has the imposed R, and whose combined y's
is lower, is a special case of a more general dissociation phenomenon. When the
grain boundary dissociates into two, a grain of the same phase has formed a layer
that *wets* the original grain boundary, lowering its energy. When the bismuth
grain melts it is replaced by two interfaces plus a layer of a different phase
which wets the grain boundary. When a single layer wets the boundary it is easy to
understand the phenomenon in terms of thin layers of three-dimensional phases
bounded by two interfaces or grain boundaries [41,42]. Often the layer is not a
homogeneous phase, but one that changes continuously. It then becomes easier to
consider the boundary a region of continuous transition [43]. In this section we
consider only the dissociation through the means of a wetting layer composed of a
uniform phase and two interfaces or boundaries.

If the wetting layer is a different three-dimensional phase, we expect a wetting
- transition only if the thermodynamic cost of inserting this phase is negative.

The'phase is therefore likely to be one that is not too far from being stable in
bulk. Since grain boundaries can not exist without the grains, the ultimate grain
boundary phase transition occurs when the grains themselves change phase. At such
a phase transition some grain boundaries will be wet and the thickness of the
wetting layer is without limit. If conditions are changed so that the wettin?
phase is slightly unstable In bulk, It will remain at these boundaries but It s

:* thickness will be goverened by forces between the two interface boundaries.
Eventually as the wetting phase becomes more unstable, it may disappear from the
grain boundary in a phase transition. Grain boundary melting transitions have been
calculated to occur hundreds of degrees before melting.

-. In addition there is a singularity at the melting point itself. Because a wetting
layer can increase without limit at the bulk phase transition, use of the Gibbs
adsorption equation indicates that the temperature and chemical potential coeffi-
cients of y must diverge. This too has been confirmed in a grain boundary melting

-. calculation [40]. Wetting trapsitions are not confined to melting and dissoci-
ation. Solid state phase changes can also lead to wetting layers of a different
solid phase. Surprising results [44] on grain boundary diffusion in iron might be
an indication that this occurs.
Wetting occurs universally near critical consolution points because of the

interface between the two critical phases is extraordinarily low [42]. As a result
since the grain boundaries of one of the critical phases will have a lower y,
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grain boundaries of the other critical phase will be wet. As two-phase coexistence
Is approached there could be two singularities; first either an abrupt transition
to a wetting layer or a discontinuous change in adsorption, followed by the singu-
larity when the other critical phase becomes stable in bulk.

Discussion - We have made an exact analogy between the orientation of a grain
boundary normal and composition in a three-component system. They are similarly
constrained by experiment. Only their averages are fixed and the system is free to
lower its free energy by facetting or forming phases with different compositions.
The same convexity rules and tangent construction hold for equilibria. Phase

*: diagrams are similar, differing mainly in phase rule modifications because of
symmetry.

These considerations led to an obvious definition of what we should call a grain
boundary phase. A smoothly curved grain boundary is like an inhomogeneous
phase. Phase coexistence occurs usually with discontinuities in orientation.

With 6+C state variables for grain boundary properties, symmetry has an important
role in bringing the observations into a manageable form. It also plays a role in

* helping locate interesting features in phase diagram, in sectioning the hyperspace
and in predicting deviations from the phase rule.

Consistent with the ternary analogy, phase transitions generally occur by the
appearance of new orientations. The onset of facetting is a common observation.

* sOften it is brought on by the addition of certain chemical components [45]. This
must be interpreted as a phase change.

Dissociation and wetting are also commonly observed. The onset of wetting Is seen
as a phase transition as the state variables are varied. It has been found as R is
varied [25,38] increasing y of the boundary or as T is varied [40,41] changing the
stability of the wetting phase. The transition from dissociated to undissoclated
boundaries has not been pinpointed.

Most of the previous discussions of grain boundary phase transitions have impli-
citly assumed congruent phase changes. We have found that this is a rare occur-
rence at equilibrium. Far from equilibrium it can occur, just as partitionless
phase changes occur in the alloy analogue. Most of the expected observations in
these discussions required a pinpointing of singularities in equilibrium properties
and this requires observations near the equilibrium transition. None of these
methods of observation are both easy and convincing. By comparison facetting is
easy to observe, and so closely associated with grain boundary phase transitions,
that we have chosen to define phase coexistence in terms of facets. The analogue
to nucleation and growth and to spinodal decomposition has been made [29] in a
paper that recognized the equivalence of orientation in problems of facetting
mechanism with those of coimposition in phse changes.

Phase transitions far from equilibrium may proceed with a change of morphology.
V If, however, a transition is reported to occur congruently it is imperative

that the transition be re-examined close to equilibrium. The observation may
simply have been a relaxation back to equilibrium of a boundary without a phase
change. At high temperature boundaries often lose the adsorption without a phase
change. Low and high temperature properties often seem to belong to different

-* phases, but careful examination often reveals continuity and thermodynamic
U consistency without a phase change.

In a polycrystalline specimen each boundary may have one or more phase transi-
tions but these will occur at different temperatures for different boundaries.
Observations on global properties of polycrystalline samples will smear out the
phase transitions that do occur. Micrographic investigation for facetting changes
seems to be the obvious way to survey all the many boundaries in a polycrystalline
sample. 83



The most important conclusion of this paper is the clear identification between

U grain boundary phase change and facetting. It has been incorporated into our

definition of phase change. Reports of phase changes on curved boundaries without
the facetting evidence are not credible. The experimental test required by this
definition is simple enough that we should now know when we have a phase transition.
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Fig.4 : Portions of an N diagram straddling a mirror plane. Multi-
plia coexistence Is marked by a tie triangle, a tie trapezoid and
tie lines. Critical points between mirror related phases must lie on
the mirror.
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